The neighborhood complex of a random graph
نویسنده
چکیده
For a graph G, the neighborhood complex N [G] is the simplicial complex having all subsets of vertices with a common neighbor as its faces. It is a well-known result of Lovász that if ‖N [G]‖ is k-connected, then the chromatic number of G is at least k + 3. We prove that the connectivity of the neighborhood complex of a random graph is tightly concentrated, almost always between 1/2 and 2/3 of the expected clique number. We also show that the number of dimensions of nontrivial homology is almost always small, O(logd), compared to the expected dimension d of the complex itself. © 2006 Elsevier Inc. All rights reserved.
منابع مشابه
Common Neighborhood Graph
Let G be a simple graph with vertex set {v1, v2, … , vn}. The common neighborhood graph of G, denoted by con(G), is a graph with vertex set {v1, v2, … , vn}, in which two vertices are adjacent if and only if they have at least one common neighbor in the graph G. In this paper, we compute the common neighborhood of some composite graphs. In continue, we investigate the relation between hamiltoni...
متن کاملCharacteristics of Common Neighborhood Graph under Graph Operations and on Cayley Graphs
Let G(V;E) be a graph. The common neighborhood graph (congraph) of G is a graph with vertex set V , in which two vertices are adjacent if and only if they have a common neighbor in G. In this paper, we obtain characteristics of congraphs under graph operations; Graph :::::union:::::, Graph cartesian product, Graph tensor product, and Graph join, and relations between Cayley graphs and its c...
متن کاملOn common neighborhood graphs II
Let G be a simple graph with vertex set V (G). The common neighborhood graph or congraph of G, denoted by con(G), is a graph with vertex set V (G), in which two vertices are adjacent if and only if they have at least one common neighbor in G. We compute the congraphs of some composite graphs. Using these results, the congraphs of several special graphs are determined.
متن کاملThe Common Neighborhood Graph and Its Energy
Let $G$ be a simple graph with vertex set ${v_1,v_2,ldots,v_n}$. The common neighborhood graph (congraph) of $G$, denoted by $con(G)$, is the graph with vertex set ${v_1,v_2,ldots,v_n}$, in which two vertices are adjacent if and only they have at least one common neighbor in the graph $G$. The basic properties of $con(G)$ and of its energy are established.
متن کاملSpectra of some new extended corona
For two graphs $mathrm{G}$ and $mathrm{H}$ with $n$ and $m$ vertices, the corona $mathrm{G}circmathrm{H}$ of $mathrm{G}$ and $mathrm{H}$ is the graph obtained by taking one copy of $mathrm{G}$ and $n$ copies of $mathrm{H}$ and then joining the $i^{th}$ vertex of $mathrm{G}$ to every vertex in the $i^{th}$ copy of $mathrm{H}$. The neighborhood corona $mathrm{G}starmathrm{H}$ of $mathrm{G}$ and $...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 114 شماره
صفحات -
تاریخ انتشار 2007